Numerical Mathematics 1 Lecture Notes (2024/2025)

Griffin Reimerink

Contents

1	App	proximating functions	2
	1.1	Polynomial interpolation	2
		Numerical integration	
		1.2.1 Newton-Cotes quadratures	
		1.2.2 Gauss-Legendre quadrature	4
2	Roo	ot-finding	5
	2.1	Fixed-point iterations	5
		Convergence speed	
	2.3	Systems of equations	6
3	Solu	utions of ODEs	6
	3.1	The eta -method \ldots	7
	3.2	Asymptotic stability	
	3.3	Error analysis	
	3.4	Systems of ODEs	
	3.5	Asymptotic stability for linear systems	
	3.6	Asymptotic stability for nonlinear ODEs	

1 Approximating functions

1.1 Polynomial interpolation

Theorem Taylor's theorem

Let y(x) be a function and $T_ny(x)$ its degree n Taylor approximation at x_0 :

$$T_n y(x) = \sum_{n=0}^{\infty} \frac{y^{(n)}(x_0)}{n!} (x - x_0)^n = y(x_0) + y'(x_0)(x - x_0) + \frac{y''(x_0)}{2} (x - x_0)^2 + \dots$$

Then the error is equal to:

$$y(x) - T_n y(x) = y^{(n+1)}(\xi) \frac{(x-x_0)^{n+1}}{(n+1)!}$$

for some ξ between x and x_0 .

Algorithm Lagrange interpolation

If the value of y(x) at points $x_0, x_1, \ldots \in [a, b]$ is known, then we can approximate y(x) by a **Lagrange interpolator** (denoted $\Pi_n y$) by solving the following system of equations:

$$\begin{bmatrix} y(x_0) \\ y(x_1) \\ \vdots \\ y(x_n) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^n \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_n \end{bmatrix}$$

The matrix is called the Vandermonde matrix.

Degree 1 Lagrange interpolation

$$\Pi_1 y(x) = y(x_0) \frac{x - x_1}{x_0 - x_1} + y(x_1) \frac{x - x_0}{x_1 - x_0}$$

Proposition

$$\Pi_n y(x) = \sum_{k=0}^n \varphi_k(x) y(x_k) \qquad \varphi_k(x) = \prod_{\substack{j=0\\j\neq k}} \frac{x - x_j}{x_k - x_j}$$

The functions φ_k are called the **Lagrange basis functions**.

Proposition

The Lagrange interpolator Π_n is unique and the Vandermonde matrix is invertible.

Proposition Lagrange interpolation error

There exists $\xi \in (a,b)$ (which depends on x and n) such that:

$$y(x) - \Pi_n y(x) = \frac{y^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i) \quad \forall x \in [a, b]$$

For this error formula, the function needs to be continuously differentiable n+1 times. This is not necessary for the computation of Π_n .

1.2 Numerical integration

Proposition

The following equations are equivalent:

$$\dot{y} = f(y(t), t), y(t_0) = y_0 \iff y(t) = y_0 + \int_{t_0}^t f(y(s), s) ds$$

Definition

$$I(f) := \int_a^b f(x) \, \mathrm{d}x \qquad \quad \mathbb{P}_d := \{ \text{polynomials of degree } d \}$$

Approximation of an integral

We can approximate the integral I(f) by integrating the Lagrange interpolant of f:

$$\tilde{I} = \int_a^b \tilde{f}(x) \, \mathrm{d}x = \sum_{i=0}^m f(x_i) \int_a^b \varphi_i(x) \, \mathrm{d}x$$

Definition

 $\tilde{I}(f)$ has **degree of exactness** d if

$$ilde{I}(f) = I(f) \text{ for } f \in \mathbb{P}_d \quad \text{and} \quad \text{ there exists } q \in \mathbb{P}_{d+1} \text{ such that } I(q)
eq ilde{I}(q)$$

Theorem

The integral computed using a degree n polynomial interpolation has degree of exactness $n \le d \le 2(n+1)$

1.2.1 Newton-Cotes quadratures

Definition Newton polynomial

$$w_n = \prod_{i=1}^n (x - x_i)$$

Newton-Cotes quadratures

$$\tilde{I}(f) = \sum_{i=0}^{n} w_i f(a+h_i)$$
 $h_i = x_{i+1} - x_i$

n=0: midpoint rule

$$\tilde{I}(f) = f\left(\frac{a+b}{2}\right)(b-a) \quad d=1$$

n=1: trapezoidal rule

$$\tilde{I}(f) = \frac{f(a) + f(b)}{2}(b - a) \qquad d = 1$$

n=2: Simpson's rule

$$\tilde{I}(f) = \frac{b-a}{6}f(a) + \frac{2}{3}(b-a)f\left(\frac{a+b}{2}\right) + \frac{b-a}{6}f(b) \hspace{0.5cm} d = 3$$

Theorem

For Newton-Cotes quadratures with even n, we have $d \ge n+1$

Theorem Mean value theorem for integrals

Let f,g be continuous on [a,b], and g does not change sign. Then there exists $\xi \in (a,\overline{b})$ such that

$$\int_{a}^{b} f(x)g(x) dx = f(\xi) \int_{a}^{b} g(x) dx$$

1.2.2 Gauss-Legendre quadrature

Definition *Inner product of functions on* [-1,1]

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, \mathrm{d}x$$

Definition Legendre polynomials

$$L_0(x) = 1$$

$$L_1(x) = x - \frac{\langle x, L_0 \rangle}{\langle L_0, L_0 \rangle} L_0(x) = x$$

$$L_2(x) = x^2 - \frac{\langle x^2, L_0 \rangle}{\langle L_0, L_0 \rangle} L_0(x) - \frac{\langle x^2, L_1 \rangle}{\langle L_1, L_1 \rangle} L_1(x) = x^2 - \frac{1}{3}$$

$$\vdots$$

$$L_n(x) = x^n - \sum_{j=0}^{n-1} \frac{\langle x^n, L_j \rangle}{\langle L_j, L_j \rangle} L_j(x)$$

Proposition Properties of the Legendre polynomials

- 1. The Legendre polynomials are orthogonal to each other.
- 2. The degree n Legendre polynomial is orthogonal to x^k for k < n.
- 3. $\langle x^n, L_n \rangle = \langle L_n, L_n \rangle$
- 4. $\mathbb{P} = \text{span}\{L_0, L_1, \dots, L_n\}$

Proposition

 L_n is orthogonal to any polynomial of degree n-1.

Theorem

For n > 0, the roots of L_n all have multiplicity 1, and they are located in [-1,1].

Theorem Euclid's division lemma for polynomials

Given two univariate polynomials p and $h \neq 0$, there exist two unique polynomials q (the quotient) and r (the remainder) which satisfy:

$$p(x) = q(x)h(x) + r(x) \qquad \deg(q) + \deg(h) = \deg(p) \qquad \deg(r) < \deg(h)$$

Definition Gauss-Legendre quadrature

$$\tilde{I}_m^G(f) = \sum_{k=1}^m \omega_k f(x_k)$$

where x_1, \ldots, x_n are the roots of L_n , and $\omega_1, \ldots, \omega_n$ the weights that allow to integrate exactly polynomials of degree m-1 computed with the linear system:

$$\begin{bmatrix} \int_{-1}^{1} 1 \, \mathrm{d}x \\ \int_{-1}^{1} x \, \mathrm{d}x \\ \vdots \\ \int_{-1}^{1} x^{m-1} \, \mathrm{d}x \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{m-1} & x_{2}^{m-1} & \cdots & x_{m}^{m-1} \end{bmatrix} \begin{bmatrix} \omega_{1} \\ \omega_{2} \\ \vdots \\ \omega_{m} \end{bmatrix}$$

The degree of exactness of the Gauss-Legendre quadrature with m nodes is d=2m-1. Since it is built on a degree n=m-1 polynomial interpolation, the degree of exactness is equal to 2n+1.

2 Root-finding

2.1 Fixed-point iterations

Definition Fixed point

Let ϕ_f be a function dependent on f. We call x^* a **fixed point** of ϕ_f if $\phi_f(x^*) = x^*$.

Requirements of ϕ_f for root-finding

To use fixed points of ϕ_f to find roots of f, we need the following conditions:

- ϕ_f has at least 1 fixed point.
- \bullet f has a root at a fixed point of ϕ_f
- \bullet All terms of ϕ_f have the same dimension

The general form of a function that satisfies these conditions is:

$$\phi_f(x) = x + g(f(x)) \qquad g(0) = 0$$

Proposition Existence of fixed points

If the following conditions hold, ϕ_f has at least 1 fixed point.

- 1. ϕ_f maps [a,b] to [a,b].
- 2. ϕ_f is continuous on [a, b].

Note: these conditions do not imply uniqueness of the fixed point.

Definition Lipschitz continuity

 ϕ is **Lipschitz-continuous** within [a,b] if there exists L>0 such that

$$|\phi(x) - \phi(y)| \le L|x - y|$$
 for all $x, y \in [a, b]$

Proposition

$$\phi$$
 is $C^1 \implies \phi$ is Lipschitz $\implies \phi$ is C^0

Definition Contraction

 ϕ is a ${\bf contraction}$ if it is Lipschitz with L<1

Theorem *Uniqueness of fixed points*

Let ϕ_f be a function satisfying the following conditions:

- 1. ϕ_f maps [a,b] to [a,b].
- 2. ϕ_f is a contraction on [a, b].

Then ϕ_f has a unique fixed point on [a, b].

Theorem

Let ϕ be a contraction that maps [a,b] to [a,b]. Define $x^{(k+1)}=\phi(x_k)$ for some initial guess x_0 . Then $x^{(k)}$ converges to the unique fixed point x^* of ϕ as $k\to\infty$.

Definition Newton method

Let $f \in C^2$ and $f'(x) \neq 0$ on [a, b]. Then we can define the following function and iteration method:

$$\phi_N := x - \frac{f(x)}{f'(x)}$$
 $x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$

2.2 Convergence speed

Definition Convergence rate and factor

 $x^{(k)}$ is convergent to x^* with convergence rate p and convergence factor $C^{(k)}$ if

$$|x^{(k+1)} - x^{(k)}| \le C^{(k)}|x^{(k)} - x^*|^p$$

Proposition Convergence speed

If ϕ' is continuous and $\phi'(x^*) \neq 0$, we have p=1 and the following asymptotic convergence factor:

$$C^{(\infty)} = |\phi'(x^*)|$$

If ϕ'' is continuous and $\phi'(x^*)=0$, we have p=2 and the following asymptotic convergence factor:

$$C^{(\infty)} = \frac{|\phi''(x^*)|}{2}$$

If $\phi^{(0)}, \dots, \phi^{(p)}$ are continuous and $\phi^{(m)}(x^*) = 0$ for all $1 \le m < p$, then the convergence order is p and the asymptotic convergence factor is

$$C^{(\infty)} = \frac{|\phi^{(p)}(x^*)|}{p!}$$

Proposition Convergence speed of the Newton method

For the Newton method, if $f'(x^*) \neq 0$, then we have $p \geq 2$.

2.3 Systems of equations

Solving systems of equations using the Newton method

We can solve the linear system F(x) = 0 (with F, x and 0 vector-valued) with the following iteration method:

$$x^{(k+1)} = x^{(k)} - J_F^{-1}(x^{(k)})F(x^{(k)})$$

where J_F denotes the Jacobian matrix.

3 Solutions of ODEs

Cauchy problem

Let $I \subset \mathbb{R}$ and $f: I \times \mathbb{R}^n \to \mathbb{R}^m$. Find $y: I \to \mathbb{R}^n$ such that:

$$\begin{cases} y'(t) = f(t, y(t)) & t \in I \\ y(t_0) = y_0 & t_0 \in I \end{cases}$$

This can be written as:

$$y(t) = y_0 + \int_{t_0}^t f(s, y(s)) \,\mathrm{d}s$$

Numerically, our goal is to find values y_k such that $y_k \approx y(t_k)$ for some values of $t_k \in I$. To do this, we iteratively solve the following equation:

$$y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} f(s, y(s)) ds$$

The Cauchy problem has a unique solution if f is continuous with respect to t and Lipschitz with respect to y.

3.1 The β -method

Forward Euler method (explicit method)

$$u_0 = y_0$$
 $u_{n+1} = u_n + f(t_n, u_n) \cdot (t_{n+1} - t_n)$

Backward Euler method (implicit method)

$$u_0 = y_0$$
 $u_{n+1} = u_n + f(t_{n+1}, u_{n+1}) \cdot (t_{n+1} - t_n)$

Midpoint method (implicit method)

$$u_0 = y_0$$
 $u_{n+1} = u_n + f\left(\frac{t_n + t_{n+1}}{2}, \frac{u_n + u_{n+1}}{2}\right) \cdot (t_{n+1} - t_n)$

β -method

Let h be the length of each interval $[t_n, t_{n+1}]$.

$$u_0 = y_0$$
 $u_{n+1} = u_n + h f(t_{n+\beta}, (1-\beta)u_n + \beta u_{n+1})$

This method is explicit for $\beta = 0$ and implicit for $\beta > 0$.

3.2 Asymptotic stability

Definition Asymptotic stability

Let h be the length of each interval t_n, t_{n+1} . A method is:

- unconditionally stable if $u_n \xrightarrow{n \to \infty} 0$ for all h > 0
- conditionally stable if $u_n \xrightarrow{n \to \infty} 0$ for all $0 < h < h_{\rm crit}$

Stability of the β -method (linear case)

For $f(t,y)=\lambda y$, the β -method is conditionally stable for $0<\beta<\frac{1}{2}$ and unconditionally stable for $\frac{1}{2}\leq\beta\leq 1$. In the case $0<\beta<\frac{1}{2}$, we have stability if $h<\frac{\operatorname{Re}(\lambda)}{(\beta-\frac{1}{2})|\lambda|^2}$

3.3 Error analysis

Error causes

There are three steps that can possibly cause an error:

$$y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} f(s, y(s)) \, \mathrm{d}s$$

$$\downarrow \quad (1) \text{ Integral approximation}$$

$$y_{n+1} = y_n + hf(t_{n+\beta}, y(t_{n+\beta}))$$

$$\downarrow \quad (2) \text{ Approximate } y(t_{n+\beta}) \text{ by a linear combination}$$

$$y_{n+1} = y_n + hf(t_{n+\beta}, (1-\beta)y_n + \beta y_{n+1})$$

$$\downarrow \quad (3) \text{ Replace } y_n \text{ by its approximation } u_n$$

$$u_{n+1} = u_n + hf(t_{n+\beta}, (1-\beta)u_n + \beta u_{n+1})$$

Truncation error

For step (1), we have the following errors, called **truncation errors**:

$$\beta = 0 \qquad \tau_n = \frac{y''(\xi)}{2}h^2 \qquad \beta = \frac{1}{2} \qquad \tau_n \le \frac{y'''(\xi)}{24}h^3 + \frac{5}{8}h^3L_f \max_{\alpha} |y''(\alpha)| \qquad \beta = 1 \qquad \tau_n = \frac{-y''(\xi)}{2}h^2$$

 L_f is the Lipschitz constant of f with respect to y.

The order of the truncation errors is:

$$\tau_n = \begin{cases} \mathcal{O}(h^2) & \beta \in \{0, 1\} \\ \mathcal{O}(h^3) & \beta = \frac{1}{2} \end{cases}$$

Amplification factor

Let $f(t,y) = \lambda y$. Then we can write the β -method as

$$u_{n+1} = A_{\beta}(\lambda h)u_n + \frac{hg(t_{n+\beta})}{1 - \beta h\lambda} \qquad A_{\beta}(z) = \frac{1 + (1 - \beta)z}{1 - \beta z}$$

 A_{β} is called the **amplification factor**. We have asymptotic stability if $|A_{\beta}| < 1$.

Error of the β -method in the linear case

If $f(t,y) = \lambda y$, then we have the following error:

$$|y_{n+1} - u_{n+1}| \le |y_{n+1} - \hat{u}_{n+1}| + |\hat{u}_{n+1} - u_{n+1}|$$

$$\le \frac{\tau_h(h)}{1 - \lambda \beta h} + A_{\beta}(h\lambda)|y_n - u_n|$$

By computing the recursion, we get the following explicit bound for the error:

$$|y_{n+1} - u_{n+1}| \le \frac{\max_n \{\tau_n(h)\}}{|1 - \beta h\lambda|} \cdot \frac{1 - |A_\beta|^{n+1}}{1 - |A_\beta|}$$

For a fixed time T, we have

$$e(T) \leq \frac{\tau(h)}{-\lambda h}(1 - e^{\lambda T}) = \begin{cases} \mathcal{O}(h) & \beta \in \{0, 1\} \\ \mathcal{O}(h^2) & \beta = \frac{1}{2} \end{cases}$$

3.4 Systems of ODEs

System of ODEs

$$y'_1 = f_1(t, y_1(t), y_2(t) \dots, y_n(t)) \qquad y_1(t_0) = y_{1,0}$$

$$y'_2 = f_2(t, y_1(t), y_2(t) \dots, y_n(t)) \qquad y_1(t_0) = y_{2,0}$$

$$\vdots$$

$$y'_N = f_N(t, y_1(t), y_2(t) \dots, y_n(t)) \qquad y_1(t_0) = y_{N,0}$$

β -method for systems

$$\vec{U}_{n+1} = \vec{U}_n + h\vec{F}(t_{n+\beta}, (1-\beta)\vec{U}_n + \beta\vec{U}_{n+1}) \qquad \vec{U}_n = \begin{bmatrix} u_{1,n} \\ u_{2,n} \\ \vdots \\ u_{N,n} \end{bmatrix} \qquad \vec{F} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix}$$

For $\beta = 0$, the β -method is explicit and can be applied in the same way as before. For other values of β , we can apply the Newton method on the following function:

$$\vec{R}(\vec{U}_{n+1}) = \vec{U}_{n+1} - \vec{U}_n - h\vec{F}(t_{n+\beta}, (1-\beta)\vec{U}_n + \beta\vec{U}_{n+1}) = 0$$

For the initial guess we use \vec{U}_n . If the Newton method does not converge, we can decrease h until it converges.

Jacobian of R

$$J_R(X) = I - h\beta J_f(X)$$

3.5 Asymptotic stability for linear systems

Matrix amplification factor

Consider the linear system $\vec{y}' = A\vec{y}$. We can write the β -method as:

$$\vec{U}_{n+1} = \underbrace{(I - hA\beta)^{-1}(I + h(1 - \beta)A)}_{G} \vec{U}_{n}$$

We have asymptotic stability if ||G|| < 1.

Asymptotic stability for linear systems

Consider the linear system $\vec{y}' = A\vec{y}$.

For $\beta < 1/2$, we have asymptotic stability if

$$h < \frac{\operatorname{Re}(\lambda_i)}{(\beta - \frac{1}{2})|\lambda_i|^2} \qquad \text{for all eigenvalues λ_i of A}$$

3.6 Asymptotic stability for nonlinear ODEs

Direct Lyapunov method

If there exists a function $\mathbb{R}^n \to \mathbb{R}$ such that

- V(y) = 0 if and only if y = 0
- V(y) > 0 if and only if $y \neq 0$
- $\frac{\mathrm{d}}{\mathrm{d}t}V(y(t)) < 0$ for all $y \neq 0$

then $\lim_{t\to\infty}y(t)=0.$

Index

amplification factor, 8

Backward Euler, 7

conditionally stable, 7
contraction, 5
convergence factor, 6
convergence rate, 6
Convergence speed, 6
Convergence speed of the
Newton method, 6
convergent, 6

degree of exactness, 3

Euclid's division lemma for polynomials, 4

Existence of fixed points, 5

fixed point, 5 Forward Euler, 7

Inner product of functions on [-1,1], 4

Lagrange basis functions, 2 Lagrange interpolation, 2 Lagrange interpolation error, 2 Lagrange interpolator, 2 Legendre polynomials, 4 Lipschitz-continuous, 5

Mean value theorem for integrals, 3

midpoint rule, 3

Newton method, 5

Properties of the Legendre polynomials, 4

Simpson's rule, 3

Taylor's theorem, 2 trapezoidal rule, 3 truncation errors, 8

unconditionally stable, 7 Uniqueness of fixed points, 5

Vandermonde matrix, 2